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Abstract. The article examines the non-isothermal turbulent flow of a yield-stress 
viscoplastic fluid in a pipe with a sudden expansion. The effective molecular viscosity 
approach is employed to represent the rheological model of the yield-stress viscoplastic 
fluid. To perform a thorough calculation of the undeformed region of the viscoplastic 
fluid, the Papanastasiou regularization method for the effective molecular viscosity 
formula is applied.

Numerical simulations are conducted to analyze the velocity, temperature, and 
turbulent kinetic energy distributions. The results indicate significant differences in the 
flow structure between Newtonian and non-Newtonian fluids. In the case of Newtonian 
fluids, a recirculation region with negative velocities is observed downstream of the 
sudden pipe expansion, forming a characteristic end vortex. However, for viscoplastic 
fluids, this vortex structure is absent due to the yield stress effects, which suppress 
secondary flow formation.

The heat transfer characteristics along the pipe surface are also investigated. It is 
found that the distributions of heat flux for turbulent Newtonian and non-Newtonian 
fluids exhibit qualitative similarities, although quantitative differences arise due to the 
fluid’s rheological properties. The study provides insight into the complex behavior 
of viscoplastic fluids under turbulent conditions and can be beneficial for engineering 
applications involving pipeline systems, heat exchangers, and energy transport processes.
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Аннотация. Мақалада кенеттен кеңеюі бар құбырдағы тұтқыр-пластикалық 
сұйықтықтың изотермиялық емес турбуленттік ағыны қарастырылады. Тұтқырлық 
шегі бар тұтқыр-пластикалық сұйықтықтың реологиялық моделін сипаттау үшін 
эффективті молекулалық тұтқырлық әдісі қолданылады. Тұтқыр-пластикалық 
сұйықтықтың деформацияланбайтын аймағын түпкілікті есептеу үшін эффективті 
молекулалық тұтқырлық формуласы үшін Папанастасиудың регуляризация әдісі 
қолданылады.

Жылдамдық, температура және турбуленттіліктің кинетикалық энергиясының 
таралуын талдау үшін сандық модельдеу жүргізілді. Ньютондық және Ньютондық 
емес сұйықтықтардың ағын құрылымында айтарлықтай айырмашылықтар бар 
екені анықталды. Ньютондық сұйықтық жағдайында құбырдың кенеттен кеңею 
аймағынан кейін соңғы құйынды құрайтын теріс жылдамдықты рециркуляция 
аймағы байқалады. Алайда тұтқыр-пластикалық сұйықтықтарда ағымдық шектің 
әсерінен мұндай құйын құрылымы пайда болмайды, себебі ол екінші реттік 
ағынның түзілуін тежейді.

Сонымен қатар, құбырдың беті бойынша жылу алмасу сипаттамалары зерттелді. 
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Турбулентті Ньютондық және Ньютондық емес сұйықтықтар үшін құбырдың 
беті бойынша жылу ағынының таралуы сапалы түрде ұқсастық көрсетті. Зерттеу 
турбулентті жағдайда тұтқыр-пластикалық сұйықтықтардың күрделі әрекетін 
сипаттауға мүмкіндік береді және құбыр жүйелері, жылу алмастырғыштар мен 
энергия тасымалдау процестеріне байланысты инженерлік қолданбалар үшін 
пайдалы болуы мүмкін.

Түйін сөздер: изотермиялық емес турбулентті ағын, тұтқыр-пластикалық 
сұйықтық, аққыштық шегі, Рейнольдс бойынша орташаланған Навье-Стокс 
теңдеулері, кенеттен кеңею.
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ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ ВЯЗКОПЛАСТИЧНОЙ ЖИДКОСТИ 
В ТРУБЕ С РЕЗКИМ РАСШИРЕНИЕМ
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Аннотация. В статье рассматривается неизотермическое турбулентное течение 
вязкопластичной жидкости в трубе с резким расширением. Для представления 
реологической модели вязкопластичной жидкости с пределом текучести 
используется метод эффективной молекулярной вязкости. Для выполнения 
сквозного расчёта недеформируемой области вязкопластичной жидкости 
применяется метод регуляризации Папанастасиу в сочетании с формулой 
эффективной молекулярной вязкости.

Численные моделирования проведены для анализа распределений скорости, 
температуры и кинетической энергии турбулентности. Результаты показывают 
значительные различия в структуре течения ньютоновских и неньютоновских 
жидкостей. В случае ньютоновских жидкостей за участком резкого расширения 
трубы наблюдается зона рециркуляции с отрицательными скоростями, 
формирующая характерный концевой вихрь. Однако у вязкопластичных 
жидкостей такая вихревая структура отсутствует из-за влияния предела 
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текучести, который подавляет формирование вторичного течения. Дополнительно 
исследованы характеристики теплообмена вдоль поверхности трубы. Установлено, 
что распределения теплового потока для турбулентных ньютоновских и 
неньютоновских жидкостей имеют качественные сходства, однако количественные 
различия обусловлены реологическими свойствами жидкости.

Исследование даёт представление о сложном поведении вязкопластичных 
жидкостей в турбулентных условиях и может быть полезным для инженерных 
приложений, связанных с трубопроводными системами, теплообменниками и 
процессами транспортировки энергии.

Ключевые слова: неизотермическое турбулентное течение, вязкопластичная 
жидкость, предел текучести, уравнения Навье-Стокса, осреднённые по Рейнольдсу, 
резкое расширение.

Introduction 
The turbulent flow of non-Newtonian fluids in pipes or planar channels, accompanied 

by flow separation followed by reattachment, is one of the most common cases of 
shear flow. The study of such separated flows is of interest both from a fundamental 
perspective, as it provides new insights into the turbulent structure of flows, and from a 
practical standpoint, particularly in applications involving the flow around sharp-edged 
bodies. These flows are among the most important and complex cases of wall-bounded 
shear flows, characterized by elevated levels of turbulence.

In the flow separation region, significant changes in velocity, pressure, and heat 
transfer fields are observed, along with an intensification of turbulent wall-boundary 
transport processes (see monographs (Chang, 1970; Alemasov, et al., 1990; Terekhov, 
et al., 2021) and review papers (Eaton, et al., 1981; Simpson, 1989; Polyakov, et al., 
1996; Ota, 2000; Chen, et al., 2018)). Sudden flow expansion is widely used to enhance 
transport processes in Newtonian flows and is encountered in many technical devices, 
such as when connecting pipes of different diameters. Understanding the characteristics 
of flow and heat transfer under such conditions is crucial from both fundamental and 
practical perspectives.

It should be noted that despite decades of intensive research and the involvement of 
numerous scientific groups, a comprehensive theory of momentum and heat transfer for 
turbulent flows of Newtonian fluids has yet to be developed.

To date, studies on the turbulent flow and heat transfer of viscoplastic fluids in a 
pipe following a sudden expansion have not been well-documented in the available 
literature.

The aim of this work is the numerical study of flow structure and heat transfer 
in a turbulent flow of an incompressible non-Newtonian fluid in a pipe with sudden 
expansion. 

Materials and Methods
Mathematical model
Rheology of a viscoplastic fluid
According to the rheology of viscoplastic fluids, the effective molecular viscosity 
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can be expressed as follows (Schwedoff, 1981; Bingham, 1922; Wilkinson, 1960; 
Pakhomov, et al., 2023):

2 

 

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = {𝜇𝜇𝑝𝑝 + 𝜏𝜏0|𝛾̇𝛾|−1,  if |𝜏𝜏| > 𝜏𝜏0
∞,                  if |𝜏𝜏| ≤ 𝜏𝜏0

,                    (1) 

here 𝜏𝜏0 represents the yield stress and 𝜇𝜇𝑝𝑝 denotes the plastic viscosity. The other expressions in 
formula (1) are provided in Pakhomov et al. (2023).  

However, because of mathematical complexities, expression (1) cannot be utilized without 
regularization. For this purpose, the formula presented in Papanastasiou (1987) is employed. In this 
case, the effective molecular viscosity has a limitation as the shear rate tends to zero |𝛾̇𝛾|→ 0: 

 
𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜇𝜇𝑝𝑝 + 𝜏𝜏0

[1−𝑒𝑒𝑒𝑒𝑒𝑒(−103|𝛾̇𝛾|)]
|𝛾̇𝛾|                      (2) 

 
The effect of carrier fluid temperature has a strong effect on rheological properties 

(Zhapbasbayev et al. (2021); Pakhomov et al. (2024)) is taken into account by dependence of plastic 
viscosity 𝜇𝜇𝑃𝑃(𝑇𝑇), yield stress 𝜏𝜏0(𝑇𝑇), and Bingham numbers Bm = 𝜏𝜏0𝑅𝑅/(𝜇𝜇𝑃𝑃𝑈𝑈𝑚𝑚1) on fluid temperature 
(waxy crude oil) (Pakhomov et al. (2023); Pakhomov et al. (2024)) (see Table 1). These dependencies 
are based on experimental data of Pakhomov et al. (2024). 
 

Table 1 – Values of yield shear stress, plastic viscosity and Bingham numbers vs fluid temperature of NNF 
 

t, С T, K τ0, Pa μP, Pas Bm 
0 273 589.6 0.36 822.32 

10 283 2.03 0.06 17.01 
20 293 7.01E-03 0.01 0.35 
25 298 4.12E-04 0.004 0.05 
30 303 2.42E-05 0.002 0.007 

 

2.2 Governing equations 

The equation system for turbulent non-isothermal flow of viscoplastic NNF fluid is written in 
Pakhomov et al. (2023), Pakhomov et al. (2024): 

 
𝛻𝛻 ⋅ 𝑈𝑈 = 0                                                 (3) 

𝛻𝛻 ⋅ (𝜌𝜌UU) = −𝛻𝛻𝑃𝑃 + 𝛻𝛻 ⋅ (2𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆) + 𝛻𝛻 ⋅ (−𝜌𝜌⟨𝑢𝑢/𝑢𝑢/⟩) + 𝛻𝛻 ⋅ ⟨2𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒
/ 𝑆𝑆/⟩        (4) 

𝛻𝛻 ⋅ (𝜌𝜌𝐶𝐶𝑝𝑝𝑇𝑇𝑇𝑇) = 𝛻𝛻 ⋅ (𝜆𝜆𝛻𝛻𝑇𝑇) + 𝛻𝛻 ⋅ (−𝜌𝜌𝐶𝐶𝑝𝑝⟨𝑢𝑢/𝑡𝑡/⟩) + τ:S          (5) 
 
The turbulent Reynolds stress−𝜌𝜌⟨𝑢𝑢/𝑢𝑢/⟩ are modeled using k‒𝜀𝜀̃ turbulence isotropic model and 

RSM approach. Turbulent heat flux −𝜌𝜌𝐶𝐶𝑝𝑝⟨𝑢𝑢/𝑡𝑡/⟩ is given in Pakhomov et al., 2023. The expression 

𝛻𝛻 ⋅ ⟨2𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒
/ 𝑆𝑆/⟩ in equation (4) is found according to representation of Pakhomov et al. (2023), 

Pakhomov et al. (2024). The term τ:S considers the dissipation of kinetic energy and has the form as 
in Pakhomov et al. (2023). Formula for the averaged shear rate can be written as (Gavrilov et al. 
(2016)): 

 
⟨𝛾̇𝛾⟩2 = 2⟨𝑆𝑆𝑖𝑖𝑖𝑖⟩⟨𝑆𝑆𝑖𝑖𝑖𝑖⟩ + (𝜌𝜌𝜌𝜌)/⟨𝜇𝜇⟩, where ⟨𝜇𝜇⟩ = 𝜏𝜏0

⟨𝛾̇𝛾⟩ + 𝑘𝑘𝑣𝑣⟨𝛾̇𝛾⟩𝑛𝑛−1 . 
 
The elliptical relaxation Reynolds stress model (Fadai-Ghotbi et al. (2008)) partially considers 

anisotropy of complicated turbulent flows and is computationally more complicated than isotropic 
two-equation k‒ε turbulence model:  

, 			   (1)

here 
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The turbulent Reynolds stress−𝜌𝜌⟨𝑢𝑢/𝑢𝑢/⟩ are modeled using k‒𝜀𝜀̃ turbulence isotropic model and 

RSM approach. Turbulent heat flux −𝜌𝜌𝐶𝐶𝑝𝑝⟨𝑢𝑢/𝑡𝑡/⟩ is given in Pakhomov et al., 2023. The expression 
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/ 𝑆𝑆/⟩ in equation (4) is found according to representation of Pakhomov et al. (2023), 

Pakhomov et al. (2024). The term τ:S considers the dissipation of kinetic energy and has the form as 
in Pakhomov et al. (2023). Formula for the averaged shear rate can be written as (Gavrilov et al. 
(2016)): 
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⟨𝛾̇𝛾⟩ + 𝑘𝑘𝑣𝑣⟨𝛾̇𝛾⟩𝑛𝑛−1 . 
 
The elliptical relaxation Reynolds stress model (Fadai-Ghotbi et al. (2008)) partially considers 

anisotropy of complicated turbulent flows and is computationally more complicated than isotropic 
two-equation k‒ε turbulence model:  

 in equation (4) is found 
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according to representation of (Pakhomov, et al., 2023; Pakhomov, et al., 2024). The 
term 
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𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = {𝜇𝜇𝑝𝑝 + 𝜏𝜏0|𝛾̇𝛾|−1,  if |𝜏𝜏| > 𝜏𝜏0
∞,                  if |𝜏𝜏| ≤ 𝜏𝜏0

,                    (1) 

here 𝜏𝜏0 represents the yield stress and 𝜇𝜇𝑝𝑝 denotes the plastic viscosity. The other expressions in 
formula (1) are provided in Pakhomov et al. (2023).  

However, because of mathematical complexities, expression (1) cannot be utilized without 
regularization. For this purpose, the formula presented in Papanastasiou (1987) is employed. In this 
case, the effective molecular viscosity has a limitation as the shear rate tends to zero |𝛾̇𝛾|→ 0: 

 
𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜇𝜇𝑝𝑝 + 𝜏𝜏0

[1−𝑒𝑒𝑒𝑒𝑒𝑒(−103|𝛾̇𝛾|)]
|𝛾̇𝛾|                      (2) 

 
The effect of carrier fluid temperature has a strong effect on rheological properties 

(Zhapbasbayev et al. (2021); Pakhomov et al. (2024)) is taken into account by dependence of plastic 
viscosity 𝜇𝜇𝑃𝑃(𝑇𝑇), yield stress 𝜏𝜏0(𝑇𝑇), and Bingham numbers Bm = 𝜏𝜏0𝑅𝑅/(𝜇𝜇𝑃𝑃𝑈𝑈𝑚𝑚1) on fluid temperature 
(waxy crude oil) (Pakhomov et al. (2023); Pakhomov et al. (2024)) (see Table 1). These dependencies 
are based on experimental data of Pakhomov et al. (2024). 
 

Table 1 – Values of yield shear stress, plastic viscosity and Bingham numbers vs fluid temperature of NNF 
 

t, С T, K τ0, Pa μP, Pas Bm 
0 273 589.6 0.36 822.32 

10 283 2.03 0.06 17.01 
20 293 7.01E-03 0.01 0.35 
25 298 4.12E-04 0.004 0.05 
30 303 2.42E-05 0.002 0.007 

 

2.2 Governing equations 

The equation system for turbulent non-isothermal flow of viscoplastic NNF fluid is written in 
Pakhomov et al. (2023), Pakhomov et al. (2024): 

 
𝛻𝛻 ⋅ 𝑈𝑈 = 0                                                 (3) 
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The turbulent Reynolds stress−𝜌𝜌⟨𝑢𝑢/𝑢𝑢/⟩ are modeled using k‒𝜀𝜀̃ turbulence isotropic model and 

RSM approach. Turbulent heat flux −𝜌𝜌𝐶𝐶𝑝𝑝⟨𝑢𝑢/𝑡𝑡/⟩ is given in Pakhomov et al., 2023. The expression 
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/ 𝑆𝑆/⟩ in equation (4) is found according to representation of Pakhomov et al. (2023), 

Pakhomov et al. (2024). The term τ:S considers the dissipation of kinetic energy and has the form as 
in Pakhomov et al. (2023). Formula for the averaged shear rate can be written as (Gavrilov et al. 
(2016)): 
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The elliptical relaxation Reynolds stress model (Fadai-Ghotbi et al. (2008)) partially considers 

anisotropy of complicated turbulent flows and is computationally more complicated than isotropic 
two-equation k‒ε turbulence model:  
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The elliptical relaxation Reynolds stress model (Fadai-Ghotbi, et al., 2008) partially 
considers anisotropy of complicated turbulent flows and is computationally more 
complicated than the isotropic two-equation k‒ε turbulence model: 
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𝛻𝛻 ⋅ (𝜌𝜌𝜌𝜌⟨𝑢𝑢/𝑢𝑢/⟩) = 𝜌𝜌(𝑃𝑃𝑖𝑖𝑖𝑖 + ф − 𝜀𝜀) + 𝛻𝛻 ⋅ [𝜌𝜌
𝐶𝐶𝜇𝜇𝑇𝑇𝑇𝑇

𝜎𝜎𝑘𝑘
⟨𝑢𝑢/𝑢𝑢/⟩𝛻𝛻(⟨𝑢𝑢/𝑢𝑢/⟩)] 

𝛻𝛻 ⋅ (𝜌𝜌𝜌𝜌𝜌𝜌) = 1
𝑇𝑇𝑡𝑡

(𝐶𝐶𝜀𝜀1𝑃𝑃2 − 𝐶𝐶𝜀𝜀2𝜀𝜀) + 𝛻𝛻 ⋅ [𝜌𝜌 𝐶𝐶𝜇𝜇𝑇𝑇𝑇𝑇
𝜎𝜎𝜀𝜀

⟨𝑢𝑢 𝑢𝑢 ⟩ 𝛻𝛻𝜀𝜀]+ 

+𝛻𝛻 ⋅ (𝜇𝜇𝛻𝛻𝜀𝜀) + 𝐶𝐶𝜀𝜀3
𝜇𝜇𝜇𝜇
𝜀𝜀 ⟨𝑢𝑢/𝑢𝑢/⟩ ⋅ 𝛻𝛻2𝑈𝑈 ⋅ 𝛻𝛻2𝑈𝑈 

𝜒𝜒 − 𝐿𝐿𝑇𝑇
2 𝛻𝛻2𝜒𝜒 = 1/(𝜀𝜀𝑇𝑇𝑇𝑇). 

(6) 

 
Here, 𝑃𝑃𝑖𝑖𝑖𝑖 is intensity of the energy transfer from the average velocity to the pulsating one, TT is 
turbulent time macroscale;  is redistribution term,  is dissipation rate. The constants and functions 
of (6) for Newtonian turbulent fluid are taken from Fadai-Ghotbi et al. (2008). The RSM models does 
not consider the effect of non-Newtonian fluid on fluid turbulence. The same assumption was used in 
our previous papers Pakhomov et al. (2023), Pakhomov et al. (2024). 
 

2.3. Boundary conditions 
The flow schematic is shown in Fig. 1a. The boundary conditions on the wall surface (r = R2), 

pipe axis (r = 0), in inlet section (x = 0) and at outlet edge (x = L) are stated in the paper Waxy crude 
oil in the inlet cross-section is considered as a NF, then the behavior of a non-Newtonian SB fluid 
with yield stress is appeared. 

On the inner surface wall (r = R2): 
 

𝑈𝑈 = 𝑉𝑉 = ⟨𝑢𝑢/𝑢𝑢/⟩ = 0;  𝑇𝑇 = 𝑇𝑇𝑤𝑤 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐;  𝜀𝜀 = 2𝜈𝜈 𝑘𝑘
𝑦𝑦2;  𝜒𝜒 = 0 (7) 

 
On the pipe axis ( 0r  ): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑉𝑉 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = 𝜕𝜕⟨𝑢𝑢/𝑢𝑢/⟩
𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0 (8) 

 
Constant values of variables are set at the pipe inlet, and soft boundary conditions are set at 

the outlet. 

 
3. Numerical realization 
All numerical predictions are performed using “in-house” code (Pakhomov et al. (2023); 

Pakhomov et al. (2024a); Pakhomov et al. (2024b)). The set of Eqs. (1‒5) with boundary conditions 
(7–9) is solved numerically using finite control volume method, QUICK and SIMPLEC algorithms. 
The simulations use a non-uniform mesh (in axial and radial directions) with refinement close to pipe 
wall and in entrance zone (see Fig. 1b). The numerical realization is given in details in Pakhomov et 
al. (2023); Pakhomov et al. (2024a); Pakhomov et al. (2024b). The grid convergence test for the local 
Nusselt numbers Nu = −(𝜕𝜕𝑇𝑇/𝜕𝜕𝑦𝑦)𝑊𝑊𝐻𝐻 (𝑇𝑇𝑊𝑊 − 𝑇𝑇𝑚𝑚)⁄  along the streamwise coordinate is performed on 
the grids: 250×100 (“coarse”), 500×150 (“basic”) and 750×250 (“fine”) (see Fig. 2), where 𝑦𝑦 = 𝑅𝑅 −
𝑟𝑟 is a distance normal to a wall, H is step height, and Tm is a mean-mass fluid temperature. The 
difference between “basic” and “fine” grids is very small (up to 0.1%) and the “basic” grid is used in 
authors’ simulations.  

 

 (6)

Here, Pij is the intensity of the energy transfer from the average velocity to the 
pulsating one, Tt is the turbulent time macroscale; φ is the redistribution term, ε is the 
dissipation rate. The constants and functions of (6) for Newtonian turbulent fluid are 
taken from (Fadai-Ghotbi, et al., 2008). The RSM models do not consider the effect of 
non-Newtonian fluid on fluid turbulence. The same assumption was used in our previous 
papers (Pakhomov, et al., 2023; Pakhomov, et al., 2024).

Boundary conditions
The flow schematic is shown in Fig. 1a. The boundary conditions on the wall surface 

(r = R2), pipe axis (r = 0), in the inlet section (x = 0), and at the outlet edge (x = L) are 
stated in the paper Waxy crude oil in the inlet cross-section is considered as a NF, then 
the behavior of a non-Newtonian SB fluid with yield stress appears.

On the inner surface wall (r = R2):
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Numerical realization
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r  is a distance normal to a wall, H is step height, and Tm is 
a mean-mass fluid temperature. The difference between “basic” and “fine” grids is very 
small (up to 0.1%) and the “basic” grid is used in authors’ simulations. 

	 a)							       b)
Figure 1. Schematic view of the flow behind pipe with sudden expansion (a) and the computational grid 

(not in the scale) (b). Arrow is a turbulent flow of a waxy crude oil.

Figure 2. Grid independence test for TW = 273 K. “Fine” grid has 750×250 control volumes (CVs), 
“basic” has grid 500×150 CVs and “coarse” grid has 250×100 CVs.
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Validation and verification for the Newtonian turbulent fluid in a pipe with 
sudden expansion

For validation and verification, a comparison was conducted with experimental 
data (Baughn, et al., 1984) on heat transfer in the turbulent flow of a Newtonian fluid 
(air) downstream of a sudden pipe expansion (see Fig. 3). The first two cross-sections 
are located within the recirculation zone, the third approximately corresponds to 
the reattachment point of the flow, and the fourth is situated in the relaxation zone 
downstream of the reattachment (see Fig. 3a).

In the first cross-section, an increase in the thermal mixing layer is observed behind 
the sudden pipe expansion. Intense turbulent mixing in the separation zone results in the 
majority of the temperature difference between the wall and the axis being concentrated 
in a thin near-wall layer at 
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 represents the Nusselt 
number for a fully developed flow in a pipe without sudden expansion. It can be seen 
that as the Reynolds number (flow velocity) increases, the intensity of heat transfer 
significantly rises, which is expected.

Notably, the location of the maximum heat transfer approximately coincides with 
the reattachment point for Newtonian fluids. This finding is consistent with both the 
experimental measurements (Baughn, et al., 1984) and our calculations. Overall, the 
analysis of the data presented in Fig. 3 demonstrates good agreement between the 
measurements (Fadai-Ghotbi, et al., 2008) and the results of our calculations.

Results and Discussion
Numerical results for the non-Newtonian turbulent flow behind pipe sudden 

expansion and discussion
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A non-isothermal viscoplastic non-Newtonian fluid (waxy crude oil) flows along a pipe 
with sudden expansion. Pipe I.D. Diameter before sudden expansion is 
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5. Numerical results for the non-Newtonian turbulent flow behind pipe sudden 
expansion and discussion 
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All predictions are carried out in the region of hydrodynamic and thermal stabilization 

in a steady-state fluid flow in a pipe with sudden expansion. Waxy crude oil in the inlet 
cross-section is considered as a Newtonian turbulent fluid. Then, the process of heat 
transfer through a cold pipe wall starts with fluid movement through a pipe. A fluid 
temperature decreases by heat transfer with cold surrounding soil through a pipe wall. 
This leads to a sharp increase in viscosity and the appearance of yield shear stress τ0 
(Zhapbasbayev, et al., 2021; Pakhomov, et al., 2024). 

Local flow structure and turbulent characteristics
Figure 4 shows the streamlines for Newtonian (a) and non-Newtonian SB (b) 

fluids downstream of a sudden expansion in a pipe. After the separation section, the 
streamlines undergo significant changes compared to the flow in the pipe prior to the 
sudden expansion. Due to flow separation, a recirculating flow zone is formed, and for 
the Newtonian fluid, a small end vortex is observed immediately downstream of the 
step. This is consistent with the conclusions for separated flows of Newtonian fluids 
(Chang, 1970; Alemasov, et al., 1990; Terekhov, et al., 2021). The flow attachment point 
is located at for the flow and for the non-Newtonian fluid.
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a)                                             b)

Figure. 4. Streamlines of Newtonian (T1 = TW =303 K) (a) and non-Newtonian SB (b) (T1 = 303 K, TW 
= 273 K) fluids behind pipe sudden expansion.

The center of the main recirculating eddy is located around x/H = 5 and y/H = 0.5. 
The small corner eddy takes place around x/H = 1, and the mean flow velocity in this 
area is very small. The lengths of recirculation zones are determined from the zero value 
of mean axial flow velocity (U = 0) for the NF and NNF. The direction of rotation in 
this vortex coincides with the direction of the main flow. As the Newtonian flow cools, 
the non-Newtonian properties of the fluid begin to manifest (a significant increase in 
plastic viscosity µP and yield stress τ0), and the flow takes on the characteristics of a 
turbulent viscoplastic Schwedoff-Bingham fluid. Flow attachment occurs at =6.2. Thus, 
it can be said that the length of the flow separation region is significantly reduced (by 
approximately 40%). It is noteworthy that the end vortex region disappears for the non-
Newtonian SB fluid. Qualitatively, this agrees with the experimental data for turbulent 
non-Newtonian fluids in the absence of heat exchange (Pereira, et al., 2000); Pereira, et 
al., 2002). It should be noted that qualitatively, the flow of non-Newtonian Schwedoff-
Bingham fluid after the sudden expansion of the pipe is similar to that of Newtonian 
fluid.

Figures 5 show the profiles of the axially averaged velocity for Newtonian (bold 
lines) and non-Newtonian Schwedoff-Bingham (dashed curves) fluids downstream of 
the sudden expansion in the pipe. The first two cross-sections are located in the flow 
separation region for both fluids. The 
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stabilization of the Newtonian turbulent flow downstream of the sudden expansion in the pipe occurs 
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viscoplastic turbulent fluid flow after the sudden expansion, the presence of a flow 
separation region is also observed. The intensity of such a flow is lower (approximately 
by 25%) compared to the corresponding Newtonian flow. The flow velocity in the core 
of the flow for the SB fluid slightly exceeds the corresponding value for the Newtonian 
turbulent flow. In the immediate vicinity of the wall, at r/R>0.9, the flow nearly stagnates 
due to yield stresses and plastic viscosity.

a)  b)  
Figure. 5. Radial profiles of dimensionless distributions of mean axial velocity U (a), turbulent kinetic 

energy k (b).

In Figure 5b, the distributions of kinetic energy of turbulence (KET) across 
the radius of the pipe downstream of its sudden expansion are shown. Turbulence 
was determined using the Reynolds stress transport model (Fadai-Ghotbi, et al., 
2008), and for axisymmetric NF and NNF, it was calculated using the relation: 
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Figure 6. Radial dimensionless profiles of averaged effective dynamic viscosity μeff.
Re = 104, ReH =2600, Pr = 42, Bm = 0.007.

With this form of writing the expression, it is easy to analyze the influence of non-
Newtonian properties of the turbulent fluid on viscosity. It can be seen that the greatest 
manifestation of the viscoplastic behavior of turbulent fluid is revealed at TW = 273 K. 
The flow shows the properties of a Newtonian fluid and the value of apparent viscosity 
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Newtonian fluid and the value of apparent viscosity / ( )  1eff T     at TW = 303 K. The main  at TW = 303 K. The main zone of manifestation of non-Newtonian 

behavior of turbulent fluid is limited to the recirculating region at r/R > 2. As we showed 
earlier (Zhapbasbayev, et al., 2021; Pakhomov, et al., 2023) for a turbulent flow of waxy 
crude oil in a pipe without sudden expansion, the properties of SB fluid appear at TW ≤ 
293 K. Qualitatively similar behavior of turbulent non-isothermal fluid is obtained for 
the flow in a pipe with sudden expansion.

Conclusion
The transition of a Newtonian turbulent fluid into a viscoplastic non-Newtonian 

Schewedoff-Bingham fluid in a pipe with a sudden expansion is numerically studied. 
The kinetic energy of turbulence of a fluid flow is predicted using the elliptic relaxation 
Reynolds stress model. 

For the velocity profiles of the fluid (see Fig. 5a), a region of negative velocities 
corresponding to the flow recirculation zone is observed. For the turbulent flow of 
non-Newtonian viscoplastic fluid after the sudden expansion, the presence of a flow 
separation region is also identified.

For the Schwedoff-Bingham viscoplastic fluid, it is characteristic that there is no 
local minimum in heat transfer in the angular part of the step. The turbulence level in 
the flow recirculation zone for the SB fluid is significantly lower than for the Newtonian 
flow, which is explained by the manifestation of non-Newtonian properties of waxy 
crude oil as it cools (approximately up to 30%). Near the wall, at r/R>0.9, where the 
fluid nearly stagnates, the turbulence level tends to zero.
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