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Abstract: In this paper, we prove uniqueness theorem, by one spectrum, for a Sturm-Liouville operator with
non-separated boundary value conditions and a real continuous and symmetric potential. The research method differs
from all previously known methods and is based on internal symmetry of the operator generated by invariant
subspaces.
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1. Introduction
We study the following inverse spectral problem for the Sturm-Liouville operator:

Ly =y"+q(x)y, x € (0, 1),
on a finite interval (0, 1) with non-separated boundary value conditions. Inverse problems consist in
restoring the coefficients of differential operators by their spectral characteristics. Such problems often
arise in mathematics and its applications.

Inverse problems for differential operators with decaying boundary value conditions have been
thoroughly studied (see monographs [1-5] and references). More difficult inverse problems for Sturm —
Liouville operators with non-decaying boundary value conditions were studied in [6—17] and other works.
In particular, periodic boundary-value problem was considered in [6, 7, 9, 14]. 1. V. Stankevich [6]
proposed formulation of the inverse problem and proved the corresponding uniqueness theorem. V. A.
Marchenko and I. V. Ostrovsky [7] characterized spectrum of a periodic boundary-value problem in terms
of a special conformal mapping. The conditions proposed in [7] are difficult to verify. Another method,
used in [9], made it possible to obtain necessary and sufficient conditions for solvability of the inverse
problem in the periodic case that are more convenient to verify. Similar results were obtained in [9], and
for another type of boundary conditions, namely

y'(0) = ay(0) + by(n) = y'(m) + dy(x) — by(0) = 0.

Later similar results were obtained in [12, 13]. In the paper [18], the case when the potential q is
symmetric with respect to the middle of interval, i.e., q (x) = q (& — x) a.e. on (0, ), was studied, and for
this case a solution of the inverse spectral problem was constructed and a spectrum was given. The
symmetric case requires nontrivial changes in the method and allows us to specify less spectral
information than in the general case. Some results for the symmetric case were obtained in [10] and [17] -
[24].
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The inverse problems of spectral analysis are understood as problems of reconstructing a linear
operator from one or another of its spectral characteristics. The first significant result in this direction was
obtained in 1929 by V.A. Ambardzumyan [25]. He proved the following theorem.

By 1, < 4; < 1, < -+- we denote eigenvalues of the following Sturm-Liouville problem

=y +qx)y =2y, (1.1)
y'(0)=0, y'(m) =0; (1.2)
where q(x) is a real continuous function. If

A, =n?2(n=0,12,..) toq(x) =0.

The first mathematician who drew attention to importance of this Ambardzumyan result was the
Swedish mathematician Borg. He performed the first systematic research of one of important inverse
problems, namely, the inverse problem for the classical Sturm — Liouville operator of the form (1.1) by the
spectra [26]. Borg showed that in the general case one spectrum of the Sturm - Liouville operator does not
determine it, so the Ambartsumyan result is an exception to the general rule. In the same paper [26], Borg
showed that two spectra of the Sturm — Liouville operator (under various boundary conditions) uniquely
determine it. More precisely, Borg proved the following theorem.

Borg Theorem.

Let the equations

—y" +q(x)y = 2y, (1.1
—z"+px)z = Az, (1.3)

have the same spectrum under the boundary value conditions

(@@ +8y© =0 L
yy(@) + 8y’ (m) = 0; '
under the boundary value conditions
(@ By =0 (L)
y'y(@) +8'y'(m) = 0. '

Then q(x) = p(x) almost everywhere on the segment [0, 7], if
6-6"=0, 5]+ 18| > 0.

Soon after the Borg work, important studies on the theory of inverse problems were carried out by
Levinson [27], in particular, he proved that if g(m — x) = q(x), then the Sturm — Liouville operator

—y" +qx)y = Ay, (1.1)

y'(0) — hy(0) =0,
{y’(n) +hy(m) =0 (1.5)

is reconstructed by one spectrum.

A number of B.M. Levitan works [28, 29] are devoted to reconstruction of the Sturm — Liouville
operator by one and two spectra.

This work is devoted to a generalization of the theorems of Ambartsumian [25] and Levinson [27], in
particular, our results contain the results of these authors. Research method of this work appeared under
influence of [30] - [32], and differs from all previously known methods.

1. Research Method.

Idea of this work is very simple. Having studied in detail contents of [1, 3], we realized that both of
these operators have an invariant subspace. If for the linear operator L, we have the formulas

LP =PL*, QL =L"Q,

where P, Q are orthogonal projectors, satisfying the condition P + Q = I, then the operators L and L* have
invariant subspaces, sometimes restriction of these operators to these invariant subspaces, under certain
conditions, form a Borg pair.
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2. Research Results.
In the Hilbert space H = L?(0, ) we consider the Sturm — Liouville operator.

Ly =—-y" +q(x)y, x € (0,m); (3.1)

{ally(o) + a;,y'(0) + ay3y(m) + a1y’ () =0,

az1y(0) + az;y'(0) + az3y(m) + az,y'(m) =0

where q(x) is a continuous complex function, a;; (i =1,2; j=1,2,3,4) are arbitrary complex
coefficients, and by A; j (i=1,2; j=1,2,3,4) we denote minors of the boundary matrix:

(3.2)

:(all a;; Q13 a14)
Ay1 Gy @23 A4/

Suppose that A;3# 0, then the Sturm — Liouville operator (3.1) — (3.2) has the following form
Ly =—-y" +q(x)y, x € (0,7); (3.1)

{A133’(0) — A3,y'(0) — Azuy'(m) =0,
A1,y'(0) + Ayzy(m) + Ay’ () =0,

and its conjugate operator L* has the form

Ltz=—-z"+q(x)z, x € (0,m); 3.1)"

(3.3)

(B15200) B3¢ 0) =Byt 1) =0 o3
D347 (0) + Ay3z(m) + A142" () = 0. '
Let P and Q be orthogonal projectors, defined by the formulas
_ux)+u(r—x) _v(x)-v(n—-x)

Pu(x) = LI | gy (y) = X2 (3.4)
The main result of this paper is the following theorem.
Theorem 3.1. If A;3# 0, and
1) LP = PL*; (3.5)
2) QL = L*Q; (3.6)
3) A= —Azy; (3.7

then the Sturm — Liouville operator (3.1) — (3.3) is reconstructed by one spectrum.

3. Discussion.

In this section we prove the theorem and discuss the obtained results. The following Lemmas 4.1 and
4.2 can have independent values.

Lemma 4.1. If for a linear and discrete operator L, the following equalities hold:

1) LP = PL*; (3.5)
2) QL = L*Q; (3.6)
3) P+Q =1 (3.8)

where P, Q are orthogonal projectors, and I is unit operator, then all its eigenvalues are real.
Proof.
Let LP = PL*, QL = L*Q; then
(LP)* = P*L* = PL* = LP;
QL) =LQ"=LQ =QL;
i.e. operators LP and QL are selfadjoint, therefore their eigenvalues are real.
If Ly = Ay, y # 0, then QLy = AQy, L*Qy = AQy, L"Q(Qy) = AQy, QL(Qy) = AQy if Qy # 0,

then A is a real quantity; if Qy = 0, then y = Py # 0, and LPy = APy, LP(Py) = APy. Consequently, 1
is again real quantity.
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The following lemma shows that the spectrum (L) of the operator L splits into two parts; therefore,
the operator L, apparently, also splits into two parts. Furthermore, we will see that this is exactly what
happens, and more precisely, these parts form a Borg pair under a certain condition.

Lemma 4.2. If L is a linear discrete operator, satisfying the conditions:

1) LP = PL*, (3.5)
2) QL =1L*Q; (3.6)
3) P+Q =1 (3.8)
where P, Q are orthogonal projectors, and [ is identity operator, then we have
o(L) =0(Ly) Ua(L,). (3.9)
where L; = LP, L, = QL, o(L) is a spectrum of the operator L.
Proof.

If Ly = Ay, y # 0, then QLy = AQy, L*Qy = AQy, L*Q(Qy) = 1Qy, L,Qy = AQy. If Qy # 0, then
A€a(Ly). If Qy =0, then y = Py # 0 and LPy = APy, LP(Py) = APy, L,Py = APy. Consequently,
A€ a(Ly).

Hence, a(L) € (L) Ua(L,).

IfA#0,and A € (L) U c(L,), then

a) If 1 € a(L,), then Ju # 0, such that u € H;, Lyu = Au, LPu = Au,— Lu = Au. Consequently,
A€ o(l).

b) If 1 € o(L,), then 3v € H,, v # 0 such that L,v = Av, QLv = Av, LYQv = Av, L*v = Av. Thus,
A€o(Lt) =0a(L).

¢) If 0 € o(Ly)VUa(Ly), then if 0 € 6(L;), then Lyu =0, u € H;, LPu=0,=>Lu=0,=>0¢€
o(L).If0 € 0(L,), then L,v = 0,v € H,, QLv = 0,=> L*Qv =0,L*v =0,=> 0 € a(L*) = o(L).

The following two Lemmas 4.3 and 4.4 refine boundary conditions of the Sturm - Liouville operators
with invariant subspaces.

Lemma 4.3. If

a) A3+ 0;

b) LP = PL*;

then the following formulas hold
1) A1z + Azp= A1q + Azy;

2) B12=814 _ (A12—A14) — B34—Az,
Aqg3 Ag3 Az’

3)q(x) = q(x), q(m = x) = q(x);
and the operators L and L* have the following forms:
a)Ly = =y" + q(x)y, x € (0,m);

32[

A A
YO -y — 222 [y (0) 4y = 0,
13

A12y'(0) + Ayzy(m) + Agay' () = 0.
b)Ltz=—-2z"+4+q(x)z, x € (0,7);

A, — Ay,
2(0) + z(m) + % [z (0) + z'(7)] = 0,
13
Brs2(0) ~ 8337/ (0) — Brg(m) = .
Proof.
Assume that
LP = PL*; (3.5)
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From the condition z € D(L*) it follows that y = Pz € D(L), therefore we have the following
equalities:

z(0) + z(m) z'(0) — z'(m) z'(m) —2z'(0)
13 2 — Az 2 — A3y 5 =0,
z'(0) — z'(m) z(m) + z(0) z'(m) — z'(0)
127 5  th > 14 =0
B A W A e AL
A1z —Z(O) ;Z(n) + (A12 — Ag4) Z—,(O) 2 =0

2

From (3.5) it follows that A, + Az,= Ay, + A3y, then Az, — Azp= Ay, — Ay, and two boundary
conditions merge into one boundary condition. Hence,

z(0)+z(m)
2

z'(0)-z'(m) _

A
13 >

Summing up the boundary conditions (3.3)", we get
A13[2(0) + z(m)] + (B34 — B32)2" (0) + (Ags — Ag2)Z' (M) =0,

Dy3[2(0) + z(m)] + (A1 — 814)2' (0) — (A1 — Ayy)Z' () = 0,

Dy3[2(0) + z(m)] + (81 — A19)[2'(0) — 2" ()] = 0. (4.2)
From (4.1) and (4.2) we write the system of equations:
A [z(0) JZrZ(ﬂ)] F gy — AL [z’ (0) ;Z’(ﬂ)] _o,
i [z(0) JZrZ(ﬂ)] + (G —E0) [z’ (0) ; z'(m)] _ 0.

This system has a nontrivial solution, therefore,

Az Ay — Ay T Ajp—A1y — (A12—A14)
A13 A].Z - A14 A13 A13

Further, subtracting the second boundary condition from the first condition (see 3.3), we obtain
Ay3[y(0) = y(m)] — (A12 + A32)y"(0) — (B34 + A1)y’ (m) = 0,
Ay3[y(0) — y(m)] — (A1 + A3x)[y'(0) +y'(m)] = O,

A A
¥(0) — y(1) — % y'(0) + y'(m)] = 0

Now we study properties of the differential expression L. From the formula LP = PL*, we get
zx)+zm—x)  z2'(x)+z"(m—x) z(x) + z(r — x)

LPz =1 > - 5 +q(x) > ;

z"'"(x)+z"(mr—x)
2
q(x)z(x) + q(m — x)z(mw — x)
+ > :
q(x)z(x) —q()z(m —x) = q(x)z(x) + g(n — x)z(m — x),

PL*z = P°[-2" + q(x)z] = —
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{[ [q(x) — q(x)]z(x) + [q(x) — q(r — x)]z(m — x) = 0, 43)

q(r —x) —q(r — x)]z(mr — x) + [q(r — x) — g(x)]z(x) = 0;
q(x) —gq(x) q(x) —q(m —x)
qr —x) —q(x) q(m—x)—qlm—x)
[q(x) — q()][q(mr —x) — q(m — x)] -
[q(x) —q(mr — x)][q(r — x) — g(x)] = 0;
q(x)q(m —x) —q(x)q(m — x) — q(x)q(r — x) + g(x)g(m — x) =
=q(x)q(m —x) — q(x)q(x) — q(r — x)q(mw — x) + q(w — x)q(x);
q(x)g(m —x) + q(x)q(mr — x) = q(x)q(x) + g(w — x)q(m — x),
q()[g(mr —x) — q()] + q(r — 0)[q(x) — q(mr — x)] = 0,
[q(x) —q(m —x)] - [q(mr —x) —q(x)] =0,
lg(x) —q(m@—x)|*> =0, => q(x) = q(m —x).
Further, from (4.3) we get
[q(x) — q(x)]z(x) + [q(x) — g(x)]z(r — x) = 0,
[q(x) — q()][z(x) + z(r — x)] = 0,=> q(x) — g(x) = 0.
Lemma 4.4. If
a)A3# 0;
b) QL = L*Q,
then
1) Ay 4+ Azp= A1y + Azy;

2) (A12+A32) — Ajp+A3; — Ajg+Azy
Ag3 A3 Az’

3) q(m —x) = q(x), g(x) = q(x),
and the operators L and L* have the form

4) Ly =-y" +q(x)y, x € (0,m);
A1p+A3;

{y(O) —y(m =22 y(0) +y' (M) = 0,
A12y"(0) + A3y (m) + Ay’ () = 0.

A:| =0;

5) Ltz=-z"+q(x)z, x € (0,m);
{z(O) +2(m) + P2 [ (0) - 2 (@] = 0,

A132(0) = Ag,2'(0) — Agpz' () = 0.
Proof.
Suppose that the following equality holds:

QL=1L"Q

then the condition y(x) € D(L) implies that z = Qy € D(L*), therefore the following equalities
hold:

_y(x) —y(r—x) oy Y (@) +y (m—x)

z(x) = 3 , z'(x) = > ;
A—By(o) ;y(ﬂ) _A—gzy’(O) ;y’(n) _A—lzy () ery © _ 0,
A—My’(O)ery’(n)+A—13y(n);y(0)+A—Hy’(n);y’(0) _o;
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A—By(O) ;y(n) B (A_lz+A—32)y’(0) ;y’(n) _ 0,
_A—lgy(O) ;y(n) N (A_MJFA—M)y’(O) Ty _,,
A—By(O) ;y(n) _ (A—H+A—32)y’(0) ery’(n) o,
A—By(O) ;y(n) B (A_H+A_34)yl(0) ;y’(n) _o

From QL = L*Q it follows that A;, + Az,= A4 + Ag,, therefore there is only one boundary
condition
— v(0)— Y0+
AL ¥( )Zy(n) — (B, + Asz)y ( )Zy m _ 0. (4.4)
Subtracting the second boundary condition from the first boundary condition in (3.3), we obtain

A13[y(0) —y(m)] — (A2 + A33)y'(0) — (A4 + A3y)y' () = 0,

8 2O, 4 ) OO g5

Combining the boundary conditions (4.4) - (4.5), we have

N 0) — TT - (0 + "(m
A13 y( ) 2 y( ) (A12 A32)y ( ) 2 4 ( ) - 0;
0) — T (0 + "(m

This system of equations has a nontrivial solution, therefore
B G+ E)
Ayz —(A12 +A37)
C1103XuB rpaHMYHBIX ycioBuit (3.3)", umeem
D13[2(0) + z(M)] + (B34 — B32)2' (0) + (B4 — By5)Z' (W) = 0,
Dy3[2(0) + z(M)] + (812 — 814)2'(0) — (By2 — By4)2' () = 0,
Dy3[2(0) + z(m)] + (812 — Ay 9)[2'(0) — 2'(M)] = 0.

Consequently, boundary conditions of the operators L and L* have the following forms:

A, +A A, + A
—0=> ( 12 32) _ 512 32
Aq3 Aq3

A1x+A3;

L {y(O) —y(m) — 22y (0) +y' (W] = 0,
A15Y"(0) + A3y (m) + Ag,y' () = 0;
L {z(O) +2(m) + 27 (0) - 2 ()] = 0,
A132(0) — A3,2"'(0) — Ay,z' (1) = 0.
Further, from the formula QL = L*Q, we get

oLy = 0°l—y" + qay] = -2 _}2/ k2

q(x)y(x) — q(m — x)y(w — x)
+ > ;

- [ym el x>] _

L*Qy =

_ ) - 32/”(71 -0, 00

y@) —yw—x)
: ;
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q()y(x) —q(m — x)y(mr —x) = glx)y(x) — g(x)y(m — x),

[q(x) — q()]y(x) + [g(x) — q(m — x)]y(m — x) =0, (4.6)
[q(mr —x) —q(m —x)]y(m —x) + [q(mr — x) — q(x)]y(x) = 0;
q(x) — q(x) q(x) —q(mr —x)

lgm=x)—q(x) q@@—x)—gm—-x)|
[q(x) —q()] - [q(mr —x) —q(r — x)] —
—[q(x) — q(m — 0)][g(m — x) —q(x)] =0,
q(x)q(m —x) — q(x)q(mr — x) — q(x)q(m — x) + g(x)q(r — x) =
=q(x)q(m—x) — q(x)q(x) — q(mw — x)q(mw — x) + q(mw — x)q(x),
q(x)g(m —x) + q(x)q(m — x) = g(x)q(x) + q(r — x)q(m — x),
q()[g(mr —x) — ()] + q(r — 0)[q(x) — q(mr — x)] = 0,
[q(x) — g(m — )][q(m —x) — q(x)] =
=|q(x) = q(m = x)|*> = 0,=> q(x) = q(m — x).
From (4.6) we have
[q(x) —q()]ly(x) —y(r —x)] = 0,=> q(x) — q(x) = 0.

The previous Lemmas 4.3 and 4.4 yield the following theorem.
Theorem 4.1. If

a) A3+ 0;

b) LP = PLY;

¢) QL =L*Q,
then

1) (A12+A32) — Ajp+Azy _ AgatAzg
A4 Azq Dpy '
D14—A12\ _ A14—Dyp _ Azp—Azy
2)(A24 )_ A24__ Bag
3) q(m—x) = q(x),q(x) = q(x);
and the operators L and L* have the forms
4) Ly =—-y" +qx)y, x € (0,m);

{y(O) —y(m) — 22852 [y (0) 4+ ' ()] = 0,

A3
A12y'(0) + Agzy(m) + Ay’ () = 0.
5) L*z=-z"+q(x)z, x € (0,m);
{zm) + 2(m) + 22227/ (0) — 7' (m)] = 0,

0132(0) — B352'(0) — Ayp2' (m) = 0.
Further from the formulas LP = PL* we note that the operator L; = LP acts in the subspace H; =
PH, where H = L?(0, ). Assuming

u(x) = Py(x) =

y(x) +y(mr—x)

2
we have

y'(x)—y'(mr—x)

u'(x) = 5

Then Theorem 4.1 implies that
T
Liu=—-u"+qx)u, X € (O,—),
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A1zu(0) + (Agz — Ag)u’(0) =0,
U “
Ify € D(L), then v(x) = Qy € D(L"), and
QLy = L*Qy =L*QQy =L,y =L*'v = —v"(x) + g(x)v = —v" (x) + q(x)v.
From Qy € D(L*) it follows that

—y(0) —y(@)

YO +y'(m)
A13# — (A +Az) ————=0

2 7
A3v(0) — (A +452)v'(0) = 0,

A, + A
v(0) — —2—25(0) = 0,
s
v(0) — —22—3257(0) = 0,
A13
A13v(0) — (A + A3x)v'(0) = 0.

Thus,
L,y =—v" +qx)v x € (O E)
) ) 2 )
{A13V(0) — (812 +432)v'(0) =0, 49
s .
v(3)=o.

Equating coefficients of the boundary conditions (4.7) and (4.8), we have
Ay —Ay= —(D13 + A33),=> Ap=Ayy — Ay — Agp=
= —(A1z +A3; — Ayy) = —Azy.
Then the operators L, and L, have the following forms
s
Liu=—-u"+qx)u, X € (O,—),
A13u(0) - (Alz + A32)u,(0) = 0,
u (E) = 0.
2
T
L,v =—-v" + q(x)v, x € (0, —),
A13U(0) - (AIZ + A32)v,(0) = 0,
v (E) = 0.
2

If spectrum of the operator L is known, then, by Lemma 4.2, proved earlier, spectra of the operators
L, and L, are known. Then, by Borg theorem, the operator L, is uniquely defined on the interval [0, %],

and, due to parity and periodicity of the function q(x), on the whole interval [0, 7].
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1XaJn,IKapam,IK Silkway ynusepcureri, llIbiMkeHT K., Kazakcran;
2’4A171Ma1<TLH< QJIeyMETTIK-MHHOBAIMSUIIBIK yHUBepcuTeTi, IIIbiMKeHT K., Ka3akcran;
*M.0.Aye30B aTbingarst OHTYCTiK Kasakcran MemiekerTik yausepcuteri, IlIsivkenT ., Kasakcran

HOTEHIHAJIbI CUMMETPUSLIBL, AJI IIEKAPAJIBIK IHAPTTAPDI
AXKBIPAMAUNTBIH HITYPM-JINYBUJLJI OIIEPATOPBIHBIH KEPI ECEBI TYPAJIBI

AnHoTanusi. byn eHOEKkTe NOTCHIMANB CHMMETPHSUIBI, HAKTBHI Opi Y3IKCI3, al MIeKapalblK [apTTaphl
axopIpaMaiiTeiH [TypM-JInyBuin onepaTopbiH Oip CIEKTp apKBUIBI aHBIKTayFa OONaTHIHBI KOpceTulni. 3epTTey amici
OYpBIHFBEI oicTepIiH emoipiHe YKcaMaiIpl, )KOHE OJl ONEepaTOPIBIH IIIKi CHMMETPHSACHIHA HETi3/ereH, al Ol e3
Ke3€eTiH/Ie MHBAPUAHTTHI KEHICTIKTEPIiH CaIaphl.

Tyiiin cesmep: Ilrypm-JlnyBuwminig oneparopsi, crektp, lltypm-JlnyBwminin xepi ecebi, boprreig
TeopeMachl, AMOapIyMsHHBIH TeopeMachl, JIEBUHCOHHBIH TEOpEeMachl, AXbIPAMAWTBIH IIEKApPAIBbIK IIAPTTap,
CUMMETPHSLIIBI TOTEHIINAI, MHBAPHAHTTHI KEHICTIKTEP.

YK 517.9
A.lLINanxxaun6aes’, A.A.Illaazan6aeBa’ , A.JK.Beiice6aesa’ , B.A.lllangan6aii’

'Mesxnynaponsiii yansepeuter Silkway, r. Ilsivkent, Kazaxcran;
24P eruoHANbHBIN COIMATLHO-UHHOBAIIMOHHBIN yHuBepcurerT, I. piMkenT, Kazaxcran;
*F0xH0-Kasaxcranckuii ['ocymapcTBeHHbIil yHHBepcHTeT MM.M.Aye30Ba, r. llpivkent, Kasaxcran

OBPATHAS 3AJAYA OIIEPATOPA HITYPMA-JINYBUJLJIA
C HE PA3JAEJEHHBIMU KPAEBBIMU YCJIOBUAMHU U CUMMETPUYHBIM IOTEHITUAJIOM

AHHoTanus. B nanHOlil paboTe I0Kka3zaHa TeopeMa €AMHCTBEHHOCTH, IIO0 OJHOMY CIEKTpY, IS OIlepaTopa
[ typma-JInyBuiuist ¢ He pa3feeHHbBIMU KPAaeBbIMU YCIOBUSAMH U BEIECTBEHHBIM HEMPEPHIBHBIM U CUMMETPUYHBIM
HOTeHIManoM. MeTon uccienoBaHHs OTJIMYAETCS OT BCEX M3BECTHBIX METOJOB, U OCHOBAaH Ha BHYTPEHHIOK
CUMMETPHIO OIEepaTopa, MOPOKIACHHOTO HHBAPUAHTHBIMU HOANPOCTPAHCTBAMHU.

KioueBbie caoBa: Oneparop Lltypma-JInysuis, cnekrp, obpartHas 3amada lltypma-JInyswuisa, teopema
Bopra, Tteopema AmOaprmymsiHa, Teopema JIeBHHCOHA, Hepas[eleHHBIE KpaeBble YCIOBHSA, CHMMETPHYHBIN
MOTEHIMAJl, ”HBAPHAHTHBIE ITOIIPOCTPAHCTBA.
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