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ON THE APPLICATION OF QUADRATURE FORMULAS FOR
CALCULATING INTEGRALS OF ARBITRARY MULTIPLICITY

Abstract. In this paper, we consider the calculation of integrals of arbitrary multiplicity by the methods of non-
uniform grids, Monte Carlo and optimal coefficients. A comparative analysis of these numerical methods for
integrating multiple integrals was made. It was established that the method of optimal coefficients had an advantage
compared to other methods. It is shown that the use of uneven and parallelepipedal grids is the basis of almost all
results obtained in the field of application of theoretic — numerical methods to the problems of approximate analysis.
It is established that interpolation of functions of several variables by theoretic-numerical grids allows to receive
interpolation formulas, accuracy of which rises with increase of smoothness of functions. The number of variables in
this case has no significant effect on the order of the residual member. The use of the function f € E to Fourier

coefficients allows to obtain an interpolation formula from the quadrature formulas, which are constructed with the
help of the parallelepipedal grids. This formula is accurate for trigonometric polynomials, the degree of which does

not exceed the value of /N In 2 N .
Key words: theoretic-numerical method, quadrature formula, method of optimal coefficients, multiple integrals.

1. Introduction

There are three types of problems in which theoretic — numerical approaches lead to general results:
application of quadrature formulas for calculating integrals of arbitrary multiplicity, approximate solution
of integral equations and interpolation of functions of several variables.

The paper considers the connection between the theory of uniform distribution and the number-
theoretic method in approximate analysis. The main types of theoretic — numerical grids, non-uniform and
parallelepipedal, are analyzed. The problems of finding the optimal coefficients for parallelepipedal grids
are presented.

Theoretic — numerical algorithms of numerical integration are essential in the calculation of
interaction integrals in quantum chemistry and in the calculation of nanoscale ferromagnetic
heterosystems, and also in high-energy physics.

2. Materials and methods of research

2.1 Approximate calculation of multiple integrals

Integration of multiple integrals of functions of the class E .
The function of the form:

0

f('xla"':xs): ZC(ml,...,ms )627zi(m1xl+...m:xs) (1)

belongs to the class E7 if C(m1 yeees T ) = 0((m] yeres m_s)_a ), where m_v = max(l,

o > 1 characterizes the smoothness of functions.

mv|) and the value of
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L . . o o0”
The class EY has periodic functions that have continuous derivatives of the form V—fv,
Ox, '...0x, "
where v,,..., v, is an arbitrary permutation of fixed integers «,...,c, selected from the interval [0,0zs],
so that o, +...+ a, = as . In particular, for integer « , functions that have a derivative — will
' ox," ...0x,

belong to the class E.

It is not necessary for the function to be periodic. There are simple ways of transition from non-
periodic functions to periodic functions [1-3]. The replacement of variables that do not disrupt the
smoothness of the functions and does not lead to significant complication of calculations can also be used
for the periodization of the function.

Let R be the error of the simplest quadrature formula

[ ] G, e, , =%Zf[§l(k),...,§s(k)]—R, )

0 0

where the collection of points M, = [cfl (k),..., ¢ (k)] is called a grid.

In the case of uniform grids, arising from partition of the unit s -dimensional cube into N =n" equal
small cubes, the following estimate is valid for the functions of the class £ :

R=0 !

|, (3)

NS
achievable in this class; this estimate is not improved when using quadrature formulas with arbitrary
weights. The disadvantage of quadrature formulas with uniform grids is the decrease in their accuracy
with the increase of the number of measurements.
2.2 The first theoretic — numerical method for constructing quadrature formulas
This method is based on the use of non-uniform grids of the form [1]

e

where N is the prime number, {W} is the fractional proportion of the number %

In the case of non-uniform grids, the error estimate of the quadrature formula (2) takes the form

R=o =] ®

Non-uniform grids are obviously free from the main drawback of uniform grids — unlike estimate (3)
the order of estimate (5) remains unchanged with the increase of the number of measurements.

Along with the above-mentioned advantage of non-uniform grids, these grids have a significant
disadvantage — the accuracy of the results obtained using the corresponding quadrature formulas does not
increase with increasing smoothness of the considered functions.

2.3 The second theoretic — numerical method for constructing quadrature formulas

This method is based on the use of parallelepipedal grids of the form

B

where a,,..., a, are integer numbers selected in a special way (optimal coefficients). This method does not

have the disadvantage of non-uniform grids [5]. For parallelepipedal grids, the error estimate in formula
(2) takes the form
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R= O[IHM Nj. )

ND!
There are no grids that give better estimate R on the class E” than O(#) [6]. This estimate

cannot be improved for the case of quadrature formulas of the most general form as well [7]. Thus, grids
of the form (6) lead to quadrature formulas, in which the error estimate does not allow further significant
improvement.

When s =1, there exists a single parallelepipedal grid, which coincides with the uniform grid,

obtained by dividing the segment [0,1] into N equal parts, i.e.

M, = ({i}] ,where k=1,2,....N (8)
N

When s =2, it is not difficult to show that the integers a, =1, a, =a will be optimal coefficients
a
for any a = a(N ), in which incomplete partial relations ﬁ will be limited to a value increasing with the

growth of N not more than some degree of In N . In particular, when N =u, , where u, is a general

n?

term of the Fibonacci sequence (the Fibonacci sequence is defined as follows: u, =1, u, =1,

u,=u, +u,,, n=23,..), the integers a, =1, a, =u, , will be optimal coefficients and points

n—1

M, = [{i},{ku"“ }J ,where k =1,2,...,u, (&)
un uVl

form a two-dimensional parallelepipedal grid.
When s > 3, various sufficient optimality conditions can be used to calculate the optimal coefficients.

Let at v=12,...,s for integers z, from the segment [I,N—l] the functions H(zl,.. z ) are

94y,

determined by the equality [4]:

H(zy02,)= 2{1—21{2@117;{%}}}- : -{I—ZIH[Zsinﬁ{]ZS }ﬂ

The integers a,,...,a, will be optimal coefficients if @, =1 and for given a,,...,a,, (v=2) the

value a, is equal to any of the values z , at which the minimum of the function A (al,..., av_l,zv) is

reached.
Another sufficient condition for optimality according to [1] — the integers a,,...,a, are optimal

coefficients if the minimum multiplication m,,---,m_  for non-trivial solutions of the comparison

a,m, +...+a,m,=0(mod N) satisfies the condition E,---,m_s >BNIn"" N, where B>0 and y 20

are constants depending only on s .

From relations (4), (8) and (9) it can be seen that non-uniform grids with any s and parallelepipedal
grids with s <2 are indicated quite effectively with the help of simple formulas. When s > 3, different
algorithms have to be used to find parallelepipedal grids. Consideration of algorithms, in which the
number of operations necessary to specify the grid is not too large compared to the number of calculations
in the corresponding quadrature formulas, can be practically effective.

The first of the above methods for finding optimal coefficients is practically effective, since the

number of elementary operations in the calculations arising in it has order N 2 By slightly modifying this
algorithm, it is possible to reduce the number of operations to O(N e ), where &€ > 0 is arbitrarily small.
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Almost all the results obtained using parallelepipedal grids, it is possible to use practically effective
algorithms. However, in some cases [1], the indication of the corresponding grids is still possible only

with the help of O(N S) operations, where s > 2 is ineffective.

From the two grids leading to the following error estimates |R|<C1N “InA N and

|R| <C,N™* In”2 N, it is natural to consider the first one, which is better if a, > a, . However, the

advantage of the first grid can be revealed only at very large values of N . Therefore, in computational
practice, when choosing a quadrature formula, appropriate experiments are necessary.

3 Comparison of numerical methods for integrating multiple integrals

The multiple integral over the unit volume of some function f (x1 ,X,,X;,X, ) is replaced by the finite

jjj.jf(xl,xz,x3,x4)dx1dx2dx3dx4 :_if {&k}’{ﬂ},{ﬂ}’{%k} |

PYq k=1 pq) \pq9) (P9) (P9
where pg=4097, and a,,a,,a,,a, are optimal coefficients. The integrals of the following functions are

sum:

calculated:

XX, X3X, 5 X+ X, =X, +2x, 3 X7 X5 x,e ‘
0.0625 = 1.5 ’ ©0.051615162

4. 14 cos2z(x, + x, + x, + x,);

5. 1+sinaz(x, +x, —x, +2x,) for a=10;30,60;100;,200;

]2

4 1 2 —a[
6.~ i) for @ =1;10;30;60;1 00.
Vi

l.

'xl
1-x;

16a*

In integrals, non-periodic integrands were periodized and the integrals of them are equal to 1.

The following table shows the results of calculating the integrals in different ways. It shows that the
method of optimal coefficients has an advantage over the calculation by other methods. And also in most
cases, a significant advantage of parallelepipedal grids over other grids is revealed even with a very small
value of N [15].

Table - Results of calculating integrals by different methods

Functions Method of non- Monte Carlo methods Method of optimal
uniform grids coefficients
1 2 3 4
1 0.38 0.78 1.05 1.02 1.01 0.999995
2 0.74 0.94 0.99 1.008 1.008 0.999999
3 0.80 0.75 1.07 1.04 0.99 1.000186
4 1.01 1.009 1.002 0.99 1.01 1.000000
5 10 1.01 1.008 0.99 0.99 0.99 1.00000000
30 1.01 0.98 0.99 0.99 0.99 1.00000002
60 1.01 0.98 0.99 1.008 1.003 1.00000004
100 1.02 1.02 1.003 0.99 0.99 1.00000013
200 0.98 1.01 0.99 1.0001 1.02 1.00000021
6 1 1.03 1.23 1.03 0.93 0.99 0.999682
10 1.39 1.65 1.13 0.84 0.77 1.002806
30 3.22 248 0.87 0.91 0.95 0.940240
60 7.48 3.87 0.53 0.54 1.16 1.583021
100 16.2 5.99 0.22 0.19 1.28 3.977712
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All the obtained sets of optimal coefficients and the values of five, ten, fifteen-fold integrals
calculated by the method of optimal coefficients with parallelepipedal grids for non-periodic functions are
given in [8-14]. It was shown that the calculation of integrals with good accuracy was also possible for the
small number of nodes of the quadrature formula N . A comparative characteristic of the calculated sets
of optimal coefficients and values of multiple integrals by the theoretic - numerical methods, taking into
account the number of nodes of the quadrature formula, was also given.

The use of non-uniform and parallelepipedal grids forms the basis of almost all the results obtained in
the field of application of theoretic — numerical methods to the problems of approximate analysis.

For a multiple Fredholm integral equation of 2nd kind:

o(P)= A [K(P.Olp(Q)d0 + 1 (P). (10)

where integration is extended to a unit s — dimensional cube G, . We will assume that the free term and
the core of this equation belong to the classes E” and EJ respectively, and that the denominator of

Fredholm D(ﬁ) is non — zero. Using theoretic - numerical grids M , , one can obtain [5] an approximate
solution of equation (10) in the form

AU —~
o(P)= 3 K(P.M (M, )+ £(P)+ R,
k=1
where values of @ (M A) are determined from a system of linear algebraic equations:
N
pM,)= %ZK(M,C,M, Jo(M,)+ f(M, ), where k =1,2,...,N;
=1

moreover, the error R, depending on the choice of grids, has the same order as in the calculation of
multiple integrals of functions belonging to the class E .

For an arbitrarily small ¢ >0 and sufficiently small A, using the method of iterations and non-
uniform grids of the form (4) to calculate the increasing multiplicity integrals, we can obtain an explicit
approximate expression for (D(P):

AP = (P2 S5 (0, Do, ot 0, o .

k=1 v=1

N N

is some constant depending on & and the character of decreasing Fourier coefficients of the kernel of
equation (10).
Using parallelepipedal grids and slightly changing the definition of classes £ [6], it is possible in

s(v—1)+1 sV
Here M, = L{k },,{k—}] , n= [yln N] is the integer part of the quantity yIn/N and y

the analytical expression for gD(P) to improve the residual term to O( e ) The same methods can be

applied [15] to solving multiple Volterr equations and equations of the mixed type, in which some of the
integrations are constant and some of them are in variable limits. In [16], questions of the numerical
solution of nonlinear Volterr integral equations of the first kind with a differentiable kernel, which
degenerates at the initial point of the diagonal, are considered. It is shown that this equation reduces to the
Volterr integral equation of the third kind and a numerical method is developed on the basis of the
regularized equation. The convergence of the numerical solution to the exact solution of the Volterr
integral equation of the first kind is proved, the estimates of the error and the recursive formula of the
computational process are obtained.

In questions of interpolation of functions of many variables, the theoretic — numerical grids make it
possible to obtain interpolation formulas, the accuracy of which increases with increasing smoothness of
functions, and the number of variables does not significantly affect the order of smallness of the remainder
term. Applying quadrature formulas constructed using parallelepipedal grids to the Fourier coefficients of
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the function f e E, we obtain the interpolation formula

al a+l
X peeen X kal — x,, +0 21112“N,
fx Zf |

where functions , (x, ..., xs) are defined by equality

27z{m1 (xl 7kﬂj+‘..+ms[xs _ka, ):|
N N
l//k(xl,...,xs)z Ze .
mipoms<dNin 2N

This formula is exact for trigonometric polynomials, the degree of which does not exceed the value

\/ﬁlan.

More accurate results in the interpolation of functions of many variables can be obtained in another
way, based on the representation of a function by some finite sum of integrals and then applying the
corresponding quadrature formulas to these integrals.

4. Conclusion

The application of theoretic — numerical methods to the problems of approximate analysis is reduced
to the use of non-uniform and parallelepipedal grids. Theoretic — numerical grids make it possible to
obtain interpolation formulas, the accuracy of which increases with increasing smoothness of functions.
The number of variables does not significantly affect the order of smallness of the residual term.

I'PHTU 519.642; 519.644
C.K. 3amanoBa, A.Jl. Mypanos

on-®apabu areingarsl Kazak ¥nTTeiKk YHUBepcureti, Anmatsl, Kazakcran

EPKIH ECEJII UHTETPAJLIAP/JIbI ECEIITEY YIIIH
KBAJPATYPAJIBIK ®OPMYJIAJIAPABI KOJIJAHY TYPAJIBI

AnHorauus. byn makanana Gipkenki emec Topyap, Monrte-Kapio xoHe oHTainbl ko3dduIMeHTTep daicTe-piMeH
epKiH ecelli MHTerpaliiap/bl ecenTey KapacThlpbulabl. Ker emiemai WHTerpangap/ibl ecenTeyaiH KOpCETIIreH CaHABbIK
oMicTepiHEe CalBICTBIpManbl Tanjaay okacanasl. OHTailnbsl kosdduunuentrep omici 6acka oIiCTEpPMEH CajbICThIPFaHAA
apTHIKIIBUIBIKKA We eKeHAIri aHpikTanabl. [llamameH Tangay MoceneNnepiHe TeOpHUSUIBIK-CAHABIK OMICTepAl KOJJaHy
canacklHa OipKesKi eMec JkoHe napauleleNUuIuIeanabl TOpaapAsl NaiiianaHy HOTHXEIEepAiH KOIIiIiriHiH Heri3i 6onbin
TaOBLTATBIHEI KepceTinreH. Kem aiHbIManbuiel (QYHKOUSTAPABI TEOPHATBIK-CAHABIK TOPIAPMEH WHTEPIOIAIHANAY
(yHKUMATApABIH TETICTIMH apTTBIPYMEH ©CETiH MHTEepHOALMSUIBIK  (opMylamapabl adyFa MYMKIHIIK OepeTiHi
aHBIKTANIBI. byl sxarnaiia ailHBIMAJIbUIAPIBIH CaHbl KAJJBIK MYIICHIH a3bIFbl TOPTiOiHE eneyni ocep erneiai. Oypbe

kooduumnenrrepine f € E f’ GyHKIMSAHBI MaiifanaHy —HapajuleNenunenainsl  Topyap apKbUIBl  KYPBUIATHIH

KBaJIpaTypaiblK (opMynanapJaH UHTEPHOLUSAIBIK (OpMylaHbl alyFa MyMKiHIik Oepeni. MyHnail ¢dopMyna nopexkeci

5
VN 1n 2 N MoHHEH acHaiThIH TPUTOHOMETPHUSIIBIK ITOMHHOM/IAP YITIH 101 OOJBIT TaOBLIAIBI.
Tyiiin ce3aep: TEOPUSIBIK-CAaHIbIK dAiCi, KBaJpaTypalblK GopMyna, OHTalIbl K03 hULUEHTTEp 9ici, KOl eeMIi
HHTErpagap.

I'PHTU 519.642; 519.644
C.K. 3amanoBa, A.Jl. Mypanos

Kazaxckuii HaloHanbHbl yHUBEpcUTeT UMeHU anb-Dapadu, Anmarst, Kazaxcran

O IPUMEHEHHUU KBA/IPATYPHBIX @OPMYJI JUISI BBIYUCJIEHUA UHTEI'PAJIOB
MPOHU3BOJIBHOM KPATHOCTH

AnHoTanmusa. B mamHOIl paboTe paccCMOTPEHO BBIYHCICHHE HHTETPAIOB IIPOM3BOIBHOM KPATHOCTH METOIAMH:
HEepaBHOMEPHBIX ceToK, MoHTe-Kapno u onTuManbHbIX K03QQUIMeHToB. Bl cienan cpaBHUTENbHBIN aHATN3 YKa3aHHBIX
YUCICHHBIX METOJIOB HMHTETPHPOBAHUS MHOTOKDATHBIX HMHTETPANOB. YCTAHOBIEHO, 4YTO METOJ ONTHUMAJIbHBIX
K0d(QdULMEHTOB 00a1aeT NPEUMYIIECTBOM MO CPaBHEHMIO C OCTaldbHBIMU MeToAamHu. IToka3aHo, 4TO HCIOIb30BaHHE
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HEpaBHOMEPHBIX M MapajuleJIeNUIeaIbHbIX CETOK COCTAaBIIIET OCHOBY OOJIBIIMHCTBA DPE3YJIBTATOB, IOJyYEHHBIX B
o0JlacTH TIPEMEHEHHsI TEOPETHKO-YMCIOBBIX METOJNOB K BONpOCaM IPHOIIKEHHOTO aHalli3a. YCTaHOBIEHO, YTO
MHTEPNOJALUS QYHKIUH MHOTHX TIEPEMEHHBIX TEOPETUKO-YHCIOBBIMU CETKAMHU MO3BOJISET MOJIYYUTh HHTEPHOISIIIMOHHBIC
(hopMyIIBI, TOYHOCTh KOTOPBIX BO3PACTAET C YBEIMYEHHEM TJIaIKOCTH (QYHKIMH. UHCIIO MepeMeHHBIX B 3TOM Ciydae He

a
OKa3bIBACT CYIICCTBECHHOI'O BJIHMAHUA HA MNOPAAOK MAJIOCTH OCTATOYHOI'O YJICHA. Hcnonb3oBanue beHKHIfH/I f (S Ev K

ko3¢ dunuentaMm @Dypbe I03BOISLET MOIYUUTh HHTEPHONALHOHHYIO (GOPMYILy M3 KBaApaTypHbIX (GOPMyJ, KOTOpPbIE
MOCTPOEHBI ¢ TIOMOMIBIO TTapauleNleieJalbHBIX CeTOK. Takas (opMyna TOYHA IJIsI TPUTOHOMETPHIECKHX IMOIMHOMOB,

s
CTEIIEHb KOTOPBIX HE IMPEBOCXOAMT BEJIIMUUHBI A/ N In 2 N .

KioueBble cjIoBa: TEOPETHKO-YMCIOBOW METOM, KBajpaTypHas (opMyia, METOJ ONTHMANBHBIX KOd(QUIHEeHTOB,
MHOT'OKPaTHBIE HHTETPAJIBI.
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