2019 • 2

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ

БАЯНДАМАЛАРЫ

ДОКЛАДЫ

НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН

REPORTS

OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

PUBLISHED SINCE 1944

ALMATY, NAS RK

Бас редакторы х.ғ.д., проф., ҚР ҰҒА академигі **М.Ж. Жұрынов**

Редакция алқасы:

Адекенов С.М. проф., академик (Қазақстан) (бас ред. орынбасары)

Величкин В.И. проф., корр.-мүшесі (Ресей)

Вольдемар Вуйцик проф. (Польша)

Гончарук В.В. проф., академик (Украина)

Гордиенко А.И. проф., академик (Белорус)

Дука Г. проф., академик (Молдова)

Илолов М.И. проф., академик (Тәжікстан),

Леска Богуслава проф. (Польша),

Локшин В.Н. проф. чл.-корр. (Қазақстан)

Нараев В.Н. проф. (Ресей)

Неклюдов И.М. проф., академик (Украина)

Нур Изура Удзир проф. (Малайзия)

Перни Стефано проф. (Ұлыбритания)

Потапов В.А. проф. (Украина)

Прокопович Полина проф. (Ұлыбритания)

Омбаев А.М. проф., корр.-мүшесі (Қазақстан)

Өтелбаев М.О. проф., академик (Қазақстан)

Садыбеков М.А. проф., корр.-мүшесі (Қазақстан)

Сатаев М.И. проф., корр.-мүшесі (Қазақстан)

Северский И.В. проф., академик (Қазақстан)

Сикорски Марек проф., (Польша)

Рамазанов Т.С. проф., академик (Қазақстан)

Такибаев Н.Ж. проф., академик (Қазақстан), бас ред. орынбасары

Харин С.Н. проф., академик (Қазақстан)

Чечин Л.М. проф., корр.-мүшесі (Қазақстан)

Харун Парлар проф. (Германия)

Энджун Гао проф. (Қытай)

Эркебаев А.Э. проф., академик (Қырғыстан)

«Қазақстан Республикасы Ұлттық ғылым академиясының баяндамалары»

ISSN 2518-1483 (Online),

ISSN 2224-5227 (Print)

Меншіктенуші: «Қазақстан Республикасының Ұлттық ғылым академиясы» Республикалық қоғамдық бірлестігі (Алматы қ.) Қазақстан республикасының Мәдениет пен ақпарат министрлігінің Ақпарат және мұрағат комитетінде 01.06.2006 ж. берілген №5540-Ж мерзімдік басылым тіркеуіне қойылу туралы куәлік

Мерзімділігі: жылына 6 рет.

Тиражы: 500 дана.

Редакцияның мекенжайы: 050010, Алматы к., Шевченко көш., 28, 219 бөл., 220, тел.: 272-13-19, 272-13-18, http://reports-science.kz/index.php/en/archive

© Қазақстан Республикасының Ұлттық ғылым академиясы, 2019

Типографияның мекенжайы: «Аруна» ЖК, Алматы қ., Муратбаева көш., 75.

ДОКЛАДЫНАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН

Главный редактор д.х.н., проф., академик НАН РК **М. Ж. Журинов**

Редакционная коллегия:

Адекенов С.М. проф., академик (Казахстан) (зам. гл. ред.)

Величкин В.И. проф., чл.-корр. (Россия)

Вольдемар Вуйцик проф. (Польша)

Гончарук В.В. проф., академик (Украина)

Гордиенко А.И. проф., академик (Беларусь)

Дука Г. проф., академик (Молдова)

Илолов М.И. проф., академик (Таджикистан),

Леска Богуслава проф. (Польша),

Локшин В.Н. проф. чл.-корр. (Казахстан)

Нараев В.Н. проф. (Россия)

Неклюдов И.М. проф., академик (Украина)

Нур Изура Удзир проф. (Малайзия)

Перни Стефано проф. (Великобритания)

Потапов В.А. проф. (Украина)

Прокопович Полина проф. (Великобритания)

Омбаев А.М. проф., чл.-корр. (Казахстан)

Отелбаев М.О. проф., академик (Казахстан)

Садыбеков М.А. проф., чл.-корр. (Казахстан)

Сатаев М.И. проф., чл.-корр. (Казахстан)

Северский И.В. проф., академик (Казахстан)

Сикорски Марек проф., (Польша)

Рамазанов Т.С. проф., академик (Казахстан)

Такибаев Н.Ж. проф., академик (Казахстан), зам. гл. ред.

Харин С.Н. проф., академик (Казахстан)

Чечин Л.М. проф., чл.-корр. (Казахстан)

Харун Парлар проф. (Германия)

Энджун Гао проф. (Китай)

Эркебаев А.Э. проф., академик (Кыргызстан)

Доклады Национальной академии наук Республики Казахстан»

ISSN 2518-1483 (Online),

ISSN 2224-5227 (Print)

Собственник: Республиканское общественное объединение «Национальная академия наук Республики Казахстан» (г. Алматы)

Свидетельство о постановке на учет периодического печатного издания в Комитете информации и архивов Министерства культуры и информации Республики Казахстан №5540-Ж, выданное 01.06.2006 г.

Периодичность: 6 раз в год. Тираж: 500 экземпляров

Адрес редакции: 050010, г.Алматы, ул.Шевченко, 28, ком.218-220, тел. 272-13-19, 272-13-18

http://reports-science.kz/index.php/en/archive

©Национальная академия наук Республики Казахстан, 2019 г.

Адрес типографии: ИП «Аруна», г.Алматы, ул.Муратбаева, 75

REPORTS 2019 • 2

OF NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

Editor in chief doctor of chemistry, professor, academician of NAS RK **M.Zh. Zhurinov**

Editorial board:

Adekenov S.M. prof., academician (Kazakhstan) (deputy editor in chief)

Velichkin V.I. prof., corr. member (Russia)

Voitsik Valdemar prof. (Poland)

Goncharuk V.V. prof., academician (Ukraine)

Gordiyenko A.I. prof., academician (Belarus)

Duka G. prof., academician (Moldova)

Ilolov M.I. prof., academician (Tadjikistan),

Leska Boguslava prof. (Poland),

Lokshin V.N. prof., corr. member. (Kazakhstan)

Narayev V.N. prof. (Russia)

Nekludov I.M. prof., academician (Ukraine)

Nur Izura Udzir prof. (Malaysia)

Perni Stephano prof. (Great Britain)

Potapov V.A. prof. (Ukraine)

Prokopovich Polina prof. (Great Britain)

Ombayev A.M. prof., corr. member. (Kazakhstan)

Otelbayv M.O. prof., academician (Kazakhstan)

Sadybekov M.A. prof., corr. member. (Kazakhstan)

Satavev M.I. prof., corr. member. (Kazakhstan)

Severskyi I.V. prof., academician (Kazakhstan)

Sikorski Marek prof., (Poland)

Ramazanov T.S. prof., academician (Kazakhstan)

Takibayev N.Zh. prof., academician (Kazakhstan), deputy editor in chief

Kharin S.N. prof., academician (Kazakhstan)

Chechin L.M. prof., corr. member. (Kazakhstan)

Kharun Parlar prof. (Germany)

Endzhun Gao prof. (China)

Erkebayev A.Ye. prof., academician (Kyrgyzstan)

Reports of the National Academy of Sciences of the Republic of Kazakhstan. ISSN 2224-5227

ISSN 2518-1483 (Online), ISSN 2224-5227 (Print)

Owner: RPA "National Academy of Sciences of the Republic of Kazakhstan" (Almaty)

The certificate of registration of a periodic printed publication in the Committee of Information and Archives of the Ministry of Culture and Information of the Republic of Kazakhstan N 5540-Ж, issued 01.06.2006

Periodicity: 6 times a year Circulation: 500 copies

Editorial address: 28, Shevchenko str., of 219-220, Almaty, 050010, tel. 272-13-19, 272-13-18,

http://reports-science.kz/index.php/en/archive

REPORTS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

ISSN 2224-5227

https://doi.org/10.32014/2019.2518-1483.59

Volume 2, Number 324 (2019), 192 – 196

UDK 621.31:338 (075.8)

A.T. Djumabekova ¹, R.K. Sabirova ². D.T. Bizhanov ³, B.M. Bayadilova ⁴, Zh.M. Omarkhanova ⁵

¹Kazakh University of Economics, Finance and International Trade;

²Atyrau State University named after H. Dosmukhamedov;

³JSC "Financial Academy", Astana;

⁴Kazakh Humanities and Law Innovation University, Semey city;

⁵Kazakh Agrotechnical University named after S.Seifullin

Almagul_den@mail.ru, sabirovar68@gmail.com, dokphd.unikum@mail.ru,

melisovna@mail.ru, zhynysova@mail.ru

INNOVATION IN THE USE OF FUEL AND ENERGY RESOURCES OF THE COUNTRY

Abstract. The issues of the current state, the problems of prospects for the development of the fuel and energy complex of the Russian Federation. in particular the oil and gas industry. The factors that determine the need for innovative development of the branches of the fuel and energy complex are analyzed. The use of high-tech services in the fuel and energy sector is proposed as a basic element of this development. The authors emphasized the need to increase energy efficiency and reduce the energy intensity of the economy to the level of developed countries and consistently limit the load of the fuel and energy complex on the environment and climate by reducing pollutant emissions, discharging polluted wastewater, as well as greenhouse gas emissions, reducing waste production and energy consumption. Also, promising ways of innovative development of the fuel and energy complexes of Kazakhstan were proposed.

Keywords: innovations, fuel, resources, efficiency, ecology, mining.

INTRODUCTION

The fuel and energy complex consists of many separate spheres of economic activity, but all of them are combined into a single complex and are inextricably linked. The sphere of the extraction of fuel and energy minerals is fundamental for the fuel and energy complex. It is extensive and covers extraction as traditional hydrocarbons, including oil, gas, coal, peat, or shale. The main tasks in the field of extraction of fuel resources are the renewal and accumulation of reserves through exploration and development of new deposits. Manufacturing industries include all processes and systems for transforming primary fuel and energy resources into marketable products for their subsequent consumption or further transformation, and it is this area that produces the product with the highest value added in the fuel and energy sector. Problems of energy development, ensuring energy security as a basic element of sustainable and dynamic development of the economy of any state are constantly in the focus of attention of both specialists and the world community. Despite the efforts of a number of countries to increase capacities in the nuclear power industry and the use of renewable energy sources, the dominant position in the structure of consumption of primary energy resources will remain until 2030 for energy carriers of organic origin and will amount to 85%. At the same time, in their total volume, the first place still holds and in the future will hold coal, the second - natural gas, the third - oil.

MAIN PART

Especially great importance is the fuel and energy complex in the Republic of Kazakhstan (RK). First, in the climatic conditions of Kazakhstan, the provision of fuel and electricity to the economy and the population becomes a vital factor in the existence of entire regions. Secondly, the huge reserves of natural fuel resources provide Kazakhstan with a large part of the proceeds from their exports. Thirdly, today the

ISSN 2224-5227 2. 2019

fuel and energy complex is a huge enterprise consisting of a large number of oil and gas enterprises. Many large enterprises of the complex are city-forming. They provide not only employment for the majority of the population, but also a significant share of revenues to local budgets.

As a rule, the main factors determining the degree of use of any energy source are its estimated reserves, net yield of useful energy, cost, potential hazardous environmental impacts, as well as coal, social effects and impact on industry, ensuring the filling of budgets of all levels. In addition, the fuel and energy complex has a high state security in the republic. Each energy source has advantages and disadvantages, as a result of which the development and consumption of these sources in the world energy sector are significantly different.

Economic management of natural resources in various countries of the world. The mining industry (including oil and gas) is a leading sector of the global economy. According to the British newspaper Financial Times, this sector today ranks first in the world in terms of the capitalization of the largest companies, including the extractive industry itself (without oil and gas) in fifth place among global industries, following the banking sector, the oil and gas industry, the pharmaceutical and computer industries. (picture 1).

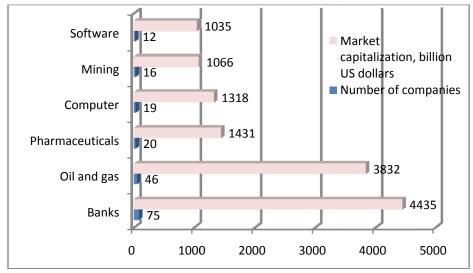


Figure 1 - Capitalization Levels of Leading Sectors of the Global Economy

In recent years, there have been intense discussions on the goals and nature of the modernization of the economy, with an unchanged focus on moving away from resource-oriented growth and the earliest possible transition to the knowledge-intensive nature of economic development.

The demand for coking coal in world markets is significantly expanding, which is associated with an increase in the production volumes of steelmaking companies in the Asian region (especially the rapidly developing steel industry in India and China) [16; 46].

RK is moving in line with the global upward trend in coal consumption, which can be called a jerk to coal. The fuel energy industry existing in Kazakhstan is based on the implementation of the model "extraction of the energy carrier — its transportation — burning at the power plant — energy production — storage of waste". Each stage in this chain is associated with a set of problems that are objectively exacerbated when the output of marketable goods is increasing.

Thus, high injuries and accident rates of Kazakhstani mines are well known, as a result of which not only economic but also huge social and political losses of society take place. In recent years, accidents claiming the lives of dozens of miners have become uncommon for the country.

Modern methods of coal mining are characterized by a large-scale anthropogenic impact on the ecology of the mining regions, aggravated by the ongoing development of the industry. In addition, the situation is exacerbated by increasing the pace of coal production in the most earthy and open way.

In addition, rail transport of coal is limited by high transport tariffs, reducing its competitiveness in distant markets. The growth of tariffs for electricity due to the high energy intensity of mining production has a negative impact on the competitiveness of coal.

Incineration of coal delivered to a thermal power plant (TPP) objectively leads to the accumulation of a significant amount of ash waste and the occupation of large areas of the earth's surface beneath dumps. The ecological situation in the areas of large and medium-sized thermal power plants deteriorates significantly over time, and the living environment degrades. Recently, progressively, in scientific circles and in the press, there has been a progressive proposal to build a thermal power plant on the sides of open cuts and to create coal-energy complexes with commercial products - electricity, transporting which to remote markets is incomparably more efficient than coal transportation. The implementation of this idea will solve some of the problems listed above.

In various sectors of the economy, the indicator of increasing energy efficiency can be:

- in the industrial sector:
- reduction of energy consumption per unit of output;
- in the housing and utilities sector:
- reduction of heat consumption per square meter of heated housing; reduction of fuel consumption at generating plants (gas, fuel oil, coal, etc.); reduction of electricity consumption per person; reduction of losses in electric, heating networks;
- in the transport sector: reduction of fuel consumption by passenger transport (air transport, rail transport, urban and intercity passenger vehicles) per person-kilometer, and personal transport per fuel-per-kilometer ratio [1, p.27].

Given that global energy consumption is constantly growing, we believe that it is necessary to consider in more detail the role and prospects for energy saving in solving this problem. Today in our country one of the solutions to the energy crisis is the introduction and use of alternative energy sources. According to experts, 70% of energy consumption comes from factories, the remaining 30% is spent by the population, while in Europe the share of energy consumed by industry is 40%. However, it is necessary to take into account the trend of growth in energy consumption with the growth of the economy.

Despite the fact that the Republic of Kazakhstan belongs to the group of countries with strategic hydrocarbon reserves, and the energy intensity in Kazakhstan is the highest in the world, the issue of energy saving and energy efficiency remains relevant. In order to solve these problems, the Energy Saving 2020 Program was developed, where one of the main priorities is the modernization and improvement of the energy efficiency of the country's industry and large-scale promotion of energy saving among the population.

Among the main tools that allow for the transition and successfully implement an innovative development model, it seems appropriate to highlight the following:

- 1. Creation of a center of innovative technologies based on the principles of a private-state partnership to solve systemic research and production problems of the development of the fuel and energy complex, as well as the development of an engineering center for power engineering for the development and manufacture of leading samples of innovative equipment, its testing and certification.
- 2. The introduction of innovative development programs of joint stock companies with state participation.
- 3. Technological platforms in the energy sector, which will combine leading universities, research institutes, design, engineering and service companies, manufacturers of equipment and energy companies.
 - 4. Innovative territorial clusters.

The main components and features of the energy of the future:

- use of unconventional and renewable energy sources solar, wind, water flows, geothermal heat, biomass, ocean and sea water;
- decentralization of energy production obtaining commercial energy from local and individual sources (solar panels, mini wind turbines, heat pumps, etc.), through which you can carry out not only self-contained power supply, but also transfer surplus to the total grid;
- introduction of energy and resource saving technologies (both industrial and domestic) widespread implementation of measures for the conservation and efficient use of energy and resources (heat, water, full utilization of residual streams), reduction of electricity losses, steam, water, any heat, etc.; reducing the amount of industrial and domestic waste;
- transfer of motor vehicles (cars, trucks, public) to non-hydrocarbon fuels and electricity, as well as the development of new economical modes of transport, such as monorail, magnetic cushion and others;

ISSN 2224-5227 2. 2019

• extensive use of Smart Grid technology (smart network), based on the principles and methods of standardizing the interoperability of power equipment and information technology.

It is assumed that in their development energy technologies can move in the directions shown in Table 1.

Directions	Technology
Motorization	Energy efficient vehicles. New materials (composites). Hybrids, electric transport. Transportation on hydrogen fuel cells. Gas for transport. Biofuels of the second and third generations.
Electrification	Distributed thermal generation (micro CHP). Wind power plants (scaling and cheapening). Thermal power (coal) installations with supercritical steam parameters. Gas-steam power plants with coal and biomass gasification. Direct converters of solar energy into electricity. Solar hubs. CO ₂ capture and disposal at thermal power stations. Decentralization of generating capacity. Intelligent Smart Grid power system. Superconductivity. Energy storage and storage systems.
Industrialization	CO ₂ capture and disposal. Production of hydrogen, synthetic fuel.
Urbanization	AktiveHouse and PassiveHouse technologies, resource-efficient cities. Heat pumps. Solar heating.
Extraction of fossil fuels	Non-traditional mining technologies (from shale, bituminous rocks) oil and gas. Deep water mining technology. Production on the Arctic shelves. Cheaper gas transportation technologies.
Note - these works [6; 7]	

Table 1 - The main directions of development of energy technologies

Some of these technologies have already come close to becoming commercial and used on an industrial scale. Other green technologies with great potential need to be improved and should be considered for the long term.

Today, the local executive bodies of all regions and cities have developed and are implementing comprehensive plans for energy conservation in the areas of housing and public utilities, industry, training, and transport as part of an energy saving program. The implementation of the programs is based on the state policy of energy saving and in the future it will allow to work out a list of tasks related to the energy security of the country. In turn, the implementation of renewable energy projects (RES), contributes to the formation of the foundations of a "green economy". Therefore, in order to effectively address this task, the energy conservation policy should cover all regions and sectors of the economy.

CONCLUSION

Summing up the above, it should be noted that the development and implementation of programs aimed at energy saving and energy efficiency contributes to the development of the production of electric and thermal energy from environmentally friendly and inexhaustible sources of free energy, including renewable energy technologies. So one of the important tasks of the FIID program of Kazakhstan and the development of its "green economy" is to increase the non-commodity export potential of Kazakhstan.

Traditional energy, based on fossil energy, is technologically, economically and environmentally unsound in meeting the growing needs of the global economy.

Today, mankind has a choice: either to address threats to energy security, internationally agreed solutions will be worked out and consistently implemented (this is not a local or national problem, but a global problem), or the struggle for resources will not result in solving the energy problem and above all for the main resource - energy.

А.Т. Джумабекова ¹, Р.К. Сабирова ², Д.Т. Бижанов ³, Б.М. Баядилова ⁴, Ж. М. Омарханова ⁵

¹Қазақ экономика, қаржы және халықаралық сауда университеті;
²Досмұхамедов атындағы Атырау мемлекеттік университеті;
^{3,4} «Қаржы академиясы» АҚ, Астана қаласы;
⁵С.Сейфуллин атындағы Қазақ агротехникалық университеті

МЕМЛЕКЕТТІҢ ОТ-ЭНЕРГЕТИКАЛЫҚ РЕСУРСТАРЫН ПАЙДАЛАНУДАҒЫ ИННОВАЦИЯЛАР

Аннотация. Қазіргі жағдайы, Ресей Федерациясының отын-энергетикалық кешені, оның ішінде мұнай-газ саласының даму перспективалары туралы мәселелер қаралды. Отын-энергетикалық кешен салаларының

инновациялық даму қажеттілігін анықтайтын факторлар талданады. Отын-энергетикалық секторда жоғары технологиялық қызметтерді пайдалану осы дамудың негізгі элементі ретінде ұсынылады. Авторлар энергетикалық тиімділікті арттыру және экономиканың энергетикалық қарқындылығын дамыған елдер деңгейіне дейін төмендету және қоршаған ортаға және климатқа ластаушы заттар шығарындыларын азайту, ластаушы ағынды суды шығарып тастау, сонымен қатар парниктік газдар шығарындыларын азайту, қалдықтар мен энергияны тұтынуды азайту жолымен үнемі шектеу қажеттігін атап өтті. Сондай-ақ Қазақстанның отын-энергетикалық кешендерін инновациялық дамытудың перспективалық жолдары ұсынылды.

Түйін сөздер: инновациялар, отын, ресурстар, тиімділік, экология, тау-кен өнеркәсібі

А.Т. Джумабекова ¹, Р.К. Сабирова ², Д.Т. Бижанов ³, Б.М. Баядилова ⁴, Ж. М. Омарханова ⁵

¹Казахский университет экономики, финансов и международной торговли;
²Атырауский государственный университет имени Х.Досмухамедова;
³АО «Финансовая академия», г.Астана;
⁴Казахского агротехнического университета имени С.Сейфуллина

ИННОВАЦИИ В ИСПОЛЬЗОВАНИИ ТОПЛИВНО-ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ СТРАНЫ

Аннотация. Рассмотрены вопросы текущего состояния, проблемы перспективы развития ТЭК РФ. в частности нефтяной и газовой промышленности. Анализируются факторы, определяющие необходимость инновационного развития отраслей топливно-энергетического комплекса. В качестве базового элемента такого развития предлагается использование высокотехнологичных услуг в отраслях ТЭК. Авторами подчеркнута необходимость повышения энергоэффективности и снижения энергоемкости экономики до уровня развитых стран и последовательное ограничение нагрузки топливно-энергетического комплекса на окружающую среду и климат путем снижения выбросов загрязняющих веществ, сброса загрязненных сточных вод, а также эмиссии парниковых газов, сокращения отходов производства и потребления энергии. А так же предложены перспективные пути инновационного развития топливно-энергетических комплексов Казахстана.

Ключевые слова: инновации, топливо, ресурсы, эффективность, экология, добыча

Сведения об авторах:

Джумабекова Алмагуль Тулегеновна - К.э.н., Казахский университет экономики, финансов и международной торговли, Almagul den@mail.ru, https://orcid.org/0000-0001-9887-0597;

Сабирова Рысты Куандиковна - к.э.н., ассоциированный профессор, заведующий кафедрой «Экономика», Атырауского государственного университета имени Х.Досмухамедова, sabirovar68@gmail.com, https://orcid.org/0000-0002-9947-6564:

Бижанов Досан Танирбергенович - Магистр, ст. преподаватель кафедры «Экономика и менеджмент», AO «Финансовая академия», г.Астана, Казахстан, dokphd.unikum@mail.ru, https://orcid.org/0000-0002-5702-0868;

Баядилова Бакыт Мелисовна - Докторант 1 года обучения специальности 6D050600 - «Экономика», Казахский гуманитарно-юридический инновационный университет, город Семей, melisovna@mail.ru, https://orcid.org/0000-0002-4972-3408;

Омарханова Жибек Максутовна - профессор кафедры финансов, Казахского агротехнического университета имени С. Сейфуллина, Астана проспект Жениса 62, orcid.org/0000-0002-8015-2383

REFERENCES

- [1] Vdovin, A. N. Development of the fuel and energy complex of Russia: alternative scenarios / A. N. Vdovin // Economic analysis: theory and practice. 2011. No. 41. P. 13–20. 2
- [2] Makarov, A. A. Prospects of the Russian Fuel and Energy Complex in the Context of the Global Crisis / A. A. Makarov // Economy of the Fuel and Energy Complex Today. 2012. № 18. P. 60–64.
- [3] Shchitova A.N. The Russian Fuel and Energy Complex: Reality and Forecasts [Text] // Innovative Economy: Proceedings of the Intern. scientific conf. (Kazan, October 2014). Kazan: Beech, 2014. p. 35-38. URL https://moluch.ru/conf/econ/archive/130/6184/
- [4] Shchitova A.N. The Russian Fuel and Energy Complex: Reality and Forecasts [Text] // Innovative Economy: Proceedings of the Intern. scientific conf. (Kazan, October 2014). Kazan: Beech, 2014. p. 35-38. URL https://moluch.ru/conf/econ/archive/130/6184/
- [5] Sanalieva L.K., Kengzhegalieva G.B., Idelbayeva A.S., Niyazbekova Sh.U. Investigation of modern economic mechanisms for construction of the intellectual potential of the country as a moving factor of innovative economic development. BULLETIN OF NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN ISSN 1991-3494, Volume 5, Number 375 (2018), 144 148https://doi.org/10.32014/2018.2518-1467.19
- [6] Eskalieva A.Zh., Rakhimova S. A., RESEARCH AND ANALYSIS OF MODERN METHODS OF ESTIMATION OF INFLUENCE OF SOCIAL AND ECONOMIC SYSTEM ON TRANSFORMATION PROCESSES. BULLETIN OF NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN. ISSN 2518-1467 Volume 1, Number 371 (2018), 127 130. https://doi.org/10.32014/2018.2518-1467.47

ISSN 2224-5227 2. 2019

Publication Ethics and Publication Malpractice in the journals of the National Academy of Sciences of the Republic of Kazakhstan

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the National Academy of Sciences of the Republic of Kazakhstan implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The National Academy of Sciences of the Republic of Kazakhstan follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service Cross Check http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the National Academy of sciences of the Republic of Kazakhstan

The Editorial Board of the National Academy of sciences of the Republic of Kazakhstan will monitor and safeguard publishing ethics.

	onal Academy of sciences of the Republic of Kazakhstan
Правил	па оформления статьи для публикации в журнале смотреть на сайте:
·	www:nauka-nanrk.kz
	ISSN 2518-1483 (Online), ISSN 2224-5227 (Print)
	http://reports-science.kz/index.php/en/archive
	Редакторы М. С. Ахметова, Т.А. Апендиев, Д.С. Аленов
	Верстка на компьютере А.М. Кульгинбаевой
	Подписано в печать 12.04.2019. Формат 60х881/8. Бумага офсетная. Печать – ризограф. 12,8 п.л. Тираж 500. Заказ 2.
	Национальная академия наук РК 050010, Алматы, ул. Шевченко, 28, т. 272-13-18, 272-13-19